
 AUTOMATIC
 PF-431i True RMS

Purpose

PR-431i True RMS automatic phase switch is used to maintain e continuity of power supply of single-phase receiver. In the vent of supply phase loss or if the phase exceeds the correct voltage values, a different phase with the correct parameters will e directed to the output.

The " i " version of the device is equipped with a contact 1. adapted to work with receivers with a large starting lectronic transformers, discharge lamps, etc.

unctionin

Athree-phase voltage is applied to the input of the switch. Voltage from one of the phases is directed at the output of the switch. The electronic circuit of the switch controls the RMS voltages of the supplied phases so that the output voltage is not lower than 190 V or higher than 280 V . The phase with the correct parameters s directed to the output of the switch. The appropriate LED indicates that the given phase is switched on the output of the switch. The L1 phase is the priority phase, which means that if its parameters are correct, then this phase will always be switched to the output. In the event of a voltage drop in the L1 phase below 190 V , total loss of voltage or its rise above 280 V (the green L1 LED goes out), the electronics will switch the L2 phase to the output (if its parameters are correct). In the case of simultaneous lack of correct voltages in L1 and L2 phases (green LEDs L1 and L2 go out), the $L 3$ phase will be switched on to the output. If the correct supply voltage returns in the L1 phase (voltage from 190 to 280 V), the system will switch on this phase to the output. After connecting the supply voltage the system blinks once with all LEDs, which indicates the appearance of voltage on the device (but not on the output). Then the device analyzes the network parameters and switches to the appropriate phase output. If the power supply N wire is connected to the wrong place, instead of switching one of the phases to the output, the device will signal an incorrect connection by lighting the LEDs in the order L1, L2, L3 ("passing" diode). In this case, disconnect the power supply from the device and connect the input wires correctly

Connection diagram

allows you to detect the "gluing" of the internal relay contacts. If allows you to detect the gluing of the internal relay contacts. If this situation is detected, all 3 LEDs will flash cyclically.
(I)

The protection works only when switching from a lower priority phase to a phase with a higher priority (for example from L 2 to L 1). It does not work when switching to a lower priority phase (for example from L1 to L2)

Assembly

1. Turn the power off
2. Connect the input voltages to terminals $3,4,5$ and the neutra wire to terminal 6. The phase with the most variable parameters should be connected to terminal 5 , whereas the phase with stabilized parameters to terminal 3 as the priority phase.
3. Connect the supplied single-phase circuit to terminal 10 (phase) and the neutral wire of the network.
4. Turn on the power supply and check the continuity of powe supply of the connected single-phase circuit by successive voltage disconnections in L 1 and then L 2 phases

The outputs 9, 10, 11 are connected in parallel, which means that the output signal is available on each of them
*The actual permissible load depends on the nature of the receivers. In the case of powering large appliances, heating or a large number of, for example, LED lamps, it is recommended to use the PF-441 switch with additional contactors.

