《F\&F》

 F\&F Filipowski L.P.Konstantynowska 79/81, 95-200 Pabianice, POLAND phone/fax (+48 42) $2152383 /(+4842) 2270971$ www.fif.com.pl; e-mail: biuro@fif.com.pl

MR-RO-4

Relay outputs expansion module with Modbus RTU output

Do not dispose of this device in the trash along with other waste!
According to the Law on Waste, electro coming from households free of charge and can give any amount to up to that end point of collection, as well as to store the occasion of the purchase of new equipment (in accordance with the principle of old-for-new, regardless of brand). Electro thrown in the trash or abandoned in nature, pose a threat to the C environment and human health.

Purpose

The MR-RO-4 module is used as an external device that extends relay outputs of the PLC programmable controllers or other devices in which data is exchanged via the RS-485 port with Modbus RTU protocol.

Functions

» 4 independent outputs (NO contacts);
» ON/OFF control;
» Output status;
" Timer control options:

- delayed activation;
- delayed activation for a preset time;
- cyclic operation ON/OFF;
- cyclic operation OFF/ON;
" State memory state after power outage;
" Automatic start for time function;
» Time of the last output switching;
" Number output switching;
» Number of executed cycles for time functions.

Functioning

The MR-RO-4 module is equipped with 4 controllable relay outputs (separated contacts). Each of the outputs operate independently and in accordance to the preset mode of operation and parameters assigned to it. The setting and reading the output status, operation parameters and adjustment of all communication and data exchange parameters is carried out via RS-485 port using Modbus RTU communication protocol. Power is indicated by a green LED "U" light. Correct data exchange between the module and other device is indicated by the LED yellow "Tx" light.

Working modes

Mode 0. ON/OFF

The default mode of module operation in which the output is directly switched on and off using commands sent via Modbus.

Mode 1. Delayed activation

Upon receiving of the ON command, the controller measures the time set in parameter T1 and activates the relay. The relay will shut down after receiving the OFF command. Sending the OFF command during the T1 time countdown will abort the cycle. Another ON command received at the time T1 or when the relay is already switched on will be ignored.

Mode 2. Activation for a preset time

The relay activates after receiving the ON command, and deactivates when the preset time is up. Next cycle can be initiated by sending the next ON command. Sending the OFF command turns off the relay. The ON command received during T1 time will be ignored.

Mode 3. Delayed activation for a preset time

The module starts measuring time T1 after receiving the ON command and then closes the relay for a time T2, after which the relay is switched off. Next cycle after completing the previous one can be activated by sending another ON command. Sending the OFF command OFF breaks the execution of the cycle and turns off the relay. The ON command received during cycle execution will be ignored.

Mode 4. OFF/ON cycle

Cyclic operations OUT OFF (relay off) for the time T1 and OUT ON (relay on) for the time T2. The cycle is started by sending the ON command. The number of executed cycles depends on the 0×235 registry value. If this register is set to 0 , the program will be executed cyclically until the OFF command is sent. If this registry value is other than zero (max. 65 535), the controller performs a predetermined number of cycles, then turns off. Sending the OFF command during the cycle breaks its execution and turns off the relay. The ON command received during
cycle execution will be ignored. After the programmed number of cycles the next ON command starts the program from the beginning.

Mode 5. ON/OFF cycle

Cyclic operations OUT ON (relay on) for the time T1 and OUT OFF (relay off) for the time T2. The cycle is started by sending the ON command. The number of executed cycles depends on the 0×235 registry value. If this register is set to 0 , the program will be executed cyclically until the OFF command is sent.
If this registry value is other than zero (max. 65535), the controller performs a predetermined number of cycles, then turns off. Sending the OFF command during the cycle breaks its execution and turns off the relay. The ON command received during cycle execution will be ignored. After the programmed number of cycles the next ON command starts the program from the beginning.

State memory and automatic start

Special functions of the state memory and automatic start can be activated for each of the outputs.
The active memory of the state restores the state of the program from before the power outage when the power is back on. State memory sets the contact in position from before the power outage for the 0 mode. Setting the state memory for modes 1-5 means that if at the time of the power outage the program was in progress, then when the power is restored it will be launched from the beginning. Active automatic start function (only if the state memory function is inactive) is the automatic execution of the selected operating mode after switching on the power supply of the module.

Device description

A - power supply
B - Modbus RTU data exchange

Terminals description

module supply (top terminals)1 - power supply (+)2 - power supply (-)
port RS-485 (top terminals)
11 - serial port (A)
12 - serial port (B)
relays outputs (bottom terminals)
1-2 - NO 1 contact
3-4 - NO 2 contact
5-6 - NO 3 contact
7-8 - NO 4 contact supply voltage.

Galvanic isolation between the relay contacts and the system power supply and communication track (min. 3 kV).

Overcurrent protection for power supply and communication input (up to max. 60 V DC) with automatic return function.

Mounting

Recommended use of interference and surge filters (e.g. OP-230 from the F\&F offer).

It is recommended to use shielded twisted-pair cables to connect the module to another device.

When using shielded cables, ground the screens only on one side and as close to the device as possible.

The ends of the signal line should be terminated with termination modules (e.g. LT-04 from the F\&F offer).

Do not route signal cables in parallel in close proximity to high and medium voltage lines.

Do not install the module in the immediate vicinity of hi-gh-power electric receivers, electromagnetic measuring instruments, phase power control devices and other devices that may cause interference.

1. Before installing the module, set the selected Modbus communication parameters and working modes.
2. Disconnect the power in the distribution box.
3. Install the module on the rail.
4. Connect the module's power supply to terminals (+) and (-) as marked.
5. Connect signal output (A and B) RS-485 port to the Master output.
6. Connect the power supply wires of the controlled receivers to the corresponding terminals of the contacts.

Connection implementation

An example of connecting the controlled receiver to the OUT1 output.

Communication settings reset

The configuration jumper is located under the front casing of the module. Activating the controller with jumper closed will restore factory settings of the communication parameters.
To do this, remove the front casing of the module. Slip the tip of the screwdriver into the cutouts at the casing frame and pry gently. Put a jumper on the 2 pins. Restart the module. After the reset, switch off the power and remove the jumper. Fit the facade lid to the LEDs and lightly press into the frame.

MB Config service software

Service program for quick configuration of the device.
The program is available on the appliance sub-page or under the "Downloads" tab on the website: www.fif.com.pl.

Technical data

power supply
maximum load current (AC-1)
contact
port
communication protocol
operating mode power indication
communication indication
communcation parameters baud rate (adjustable)
data bits
stop bits
parity bits
address
power consumption
working temperature
terminal
tightening torque
dimensions
mounting
ingress protection
$9 \div 30 \mathrm{VDC}$ $4 \times 16 \mathrm{~A}$
separowany $4 \times$ NO
RS-485
Modbus RTU
Slave
green LED
yellow LED
$1200 \div 115200$ bits/s
8
1/1.5/2
EVEN/ODD/NONE
$1 \div 247$
2 W
$-20 \div 50^{\circ} \mathrm{C}$
$2.5 \mathrm{~mm}^{2}$ screw terminals
0.4 Nm

4 modules (70 mm)
on TH-35 rail
IP20

Warranty

F\&F products are covered by a 24-month warranty from the date of purchase. The warranty is only valid with proof of purchase. Contact your dealer or contact us directly.

CE declaration

F\&F Filipowski L.P. declares that the device is in conformity with the essential requirements of the Low Voltage Directive (LVD) 2014/35/EU and the Electromagnetic Compatibility (EMC) Directive 2014/30/UE.
The CE and MID Declaration of Conformity, along with the references to the standards in relation to which conformity is declared, can be found at www.fif.com.pl from the product subpage.

Modbus RTU protocol parameters

Communication parameters

Protocole	Modbus RTU
Operating mode	Slave
	Number of bits per second: 1200, 2400,
	$4800, \underline{9600}, 19200,38400,57600,115200$
Port settings	Data bits: $\underline{8}$
(factory settings $)$	Parity: $\underline{\text { NONE, EVEN, ODD }}$
	Start bits: $\underline{1}$
	Stop bits: $1 / 1.5 / \underline{2}$

| Network address range
 (factory settings) |
| :--- |$\quad 1 \div 245(\underline{1})$

	1: Input state reading ($0 \times 01-$ Read Coils) 3: Registers group reading ($0 \times 03-$ Read Holding Register)
Command codes	5: Output states recording (0×05 - Write Single Coil) 6: Single register value setting $(0 \times 06)-$ Write Single Register)

Communication registers

address	description	func.	type	atr.
256	Reading of current one and recording of new base address: $\underline{1} \div 245$	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
257	Reading of current one and recording of new transmission rate: 0:1200 / 1:2400 / 2:4800 / 3:9600 / 4:19200/ 5:38400 / 6:57600 / 7:115200	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
258	Reading of current one and recording of new parity value: 0:NONE / 1:EVEN / 2:ODD	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
259	Reading of current one and recording of new stop bits quantity: 0 : 1 bit/1: 1,5 bit/2: $\underline{2}$ bits	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
260	Factory settings restore: Enter value 1.	06	int	W

Note!

Any change in communication parameters (transmission rate, quantity of stop bits, parity) will be applied only after power restart.

1024	Module operation time [s]:	03	int	R
\div	$1024 \times 256^{2}+$ R1025			
1025				
1026	Serial number:	03	int	R
\div	R1026 $\times 256^{2}+$ R1027			

Communication registers (cont.)

address description func. type atr.

Production date:	
1028	5 bits - day; 4 bits - month;
7 bits - year (without 2000)	

1029 Software version 03 int R

1031
$\div \quad$ Identifier: F \& | F | MB | 4 | RO 03 int R 1035

1039
Configuration jumper:
0 - open; 1 - close

03
int
R

The transducer does not support broadcast commands (address 0).

Legend: R - read, W - write

Configuration registers

address
description
func. type atr.

OUT1

Out1: operation mode
0-ON/OFF;
1 - delayed activation;
2 - activation for a preset time; 03
3 - delayed activation for a
06
preset time;
4 - OFF/ON cycle;
5 - ON/OFF cycle
$\begin{array}{llll}513 & \text { Out1: V1 time base }(1 \div 65535) & 03 \\ \text { T1 time }=\text { V1 } \times \text { F1 } & 06 & \text { int } & \text { R/W }\end{array}$
address description func. type atr.

	Out1: F1 multiplier			
514	$0: \times 0.1(\mathrm{~T} 1: 0.1 \div 6553.5 \mathrm{~s})$	03	int	R/W
	$1: \times 1(\mathrm{~T}: 1 \div 65535 \mathrm{~s})$	06		
515	Out1: V2 time base $(1 \div 65535)$	03	int	R/W
	T2 time $=$ V2 \times F2	06		
	Out1: F2 multiplier			
	$0: \times 0.1($ T2: $0.1 \div 6553.5 \mathrm{~s})$	03	int	R/W
	$1: \times 1(\mathrm{~T}: 1 \div 65535 \mathrm{~s})$	06		

Out1: number of ON/OFF cycles for modes 4 and 5

Value 0 - continuous operation (unlimited number of cycles)

518	Out1: State memory $0-$ inactive; 1 - active	03 06	int	R/W
	Out1: Automatic start 0 - inactive; 1 - active	03	int	R/W
		06		

OUT2

Out2: operation mode
0-ON/OFF;
1 - delayed activation;
2 - activation for a preset time; 03
528
3 - delayed activation for a 06 preset time;
4 - OFF/ON cycle;
5 - ON/OFF cycle
Legend: R - read, W - write

Configuration registers (cont.)

address	description	func.	type	atr.
529	Out2: V1 time base ($1 \div 65535$) T 1 time $=\mathrm{V} 1 \times \mathrm{F} 1$	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
530	Out2: F1 multiplier $\begin{aligned} & 0: \times 0.1(\mathrm{~T} 1: 0.1 \div 6553.5 \mathrm{~s}) \\ & 1: \times 1(\mathrm{~T} 1: 1 \div 65535 \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
531	Out2: V2 time base ($1 \div 65535$) T 2 time $=\mathrm{V} 2 \times \mathrm{F} 2$	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
532	Out2: F2 multiplier $\begin{aligned} & 0: \times 0.1(\mathrm{~T} 2: 0.1 \div 6553.5 \mathrm{~s}) \\ & 1: \times 1(\mathrm{~T} 2: 1 \div 65535 \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
533	Out2: number of ON/OFF cycles for modes 4 and 5 (1 $\div 65535$) Value 0 - continuous operation (unlimited number of cycles)	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
534	Out2: State memory 0 - inactive; 1 - active	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
535	Out2: Automatic start 0 - inactive; 1 - active	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W

Continued on next page

Configuration registers (cont.)

address description func. type atr.

OUT3

Out3: operation mode
0 - ON/OFF;
1 - delayed activation;
544
2 - activation for a preset time; 03
3 - delayed activation for a 06
R/W preset time;
4 - OFF/ON cycle;
5 - ON/OFF cycle

545 | | Out3: V1 time base $(1 \div 65535)$ | 03 | |
| :--- | :--- | :--- | :--- |
| T1 time $=$ V1 \times F1 | 06 | int | R/W |

Out3: F1 multiplier
546

$0: \times 0.1(\mathrm{~T} 1: 0.1 \div 6553,5 \mathrm{~s})$	03
$1: \times 1(\mathrm{~T} 1: 1 \div 65535 \mathrm{~s})$	06

int R/W
1: $\times 1$ (T1: $1 \div 65535 \mathrm{~s})$
Out3: V2 time base $(1 \div 65535) \quad 03$

Out3: F2 multiplier
548

$0: \times 0.1(\mathrm{~T} 2: 0.1 \div 6553.5 \mathrm{~s})$	03
$1: \times 1(\mathrm{~T} 2: 1 \div 65535 \mathrm{~s})$	06

int
R/W

Out3: number of ON/OFF cycles for modes 4 and 5
549
(165535)

03
Value 0 - continuous operation (unlimited number of cycles)

550 | Out3: State memory | 03 | |
| :--- | :--- | :--- |
| 0 - inactive; 1 - active | 06 | int |

Configuration registers (cont.)

address description func. type atr.

551 | Out3: Automatic start | 03 | | |
| :--- | :--- | :--- | :--- |
| $0-$ inactive; 1 - active | 06 | int | R/W |

OUT4

Out4: operation mode
O-ON/OFF;
1 - delayed activation;
2 - activation for a preset time; 03
3 - delayed activation for a 06 int

R/W preset time;
4 - OFF/ON cycle;
5 - ON/OFF cycle
561 Out4: V1 time base $(1 \div 65535)$
T 1 time $=\mathrm{V} 1 \times \mathrm{F} 1$
06
Out4: F1 multiplier
562
$0: \times 0.1(\mathrm{~T} 1: 0.1 \div 6553.5 \mathrm{~s})$
$1: \times 1(\mathrm{~T} 1: 1 \div 65535 \mathrm{~s})$ 03
$1: \times 1$ (T1: $1 \div 65535 \mathrm{~s})$

T 2 time $=\mathrm{V} 2 \times \mathrm{F} 2$
Out4: F2 multiplier
564
$0: \times 0.1$ (T2: $0.1 \div 6553.5 \mathrm{~s})$
1: $\times 1$ (T2: 1 $\div 65535 \mathrm{~s}$)
Out4: number of ON/OFF cycles for modes 4 and 5
565
(165535)

Value 0 - continuous operation (unlimited number of cycles)
int
R/W

Configuration registers (cont.)

address	description	func.	type	atr.
566	Out4: State memory 0 - inactive; 1 - active	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
567	Out4: Automatic start 0 - inactive; 1 - active	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
Outputs registers				
address	description	func.	type	atr.
0	Out1: Read and write output state recording ON/OFF	$\begin{aligned} & 01 \\ & 05 \end{aligned}$	bit	R/W
1	Out2: Read and write output state recording ON/OFF	$\begin{aligned} & 01 \\ & 05 \end{aligned}$	bit	R/W
2	Out3: Read and write output state recording ON/OFF	$\begin{aligned} & 01 \\ & 05 \end{aligned}$	bit	R/W
3	Out4: Read and write output state recording ON/OFF	$\begin{aligned} & 01 \\ & 05 \end{aligned}$	bit	R/W

Entering the ON command (0xFFOO) executes the program dependent on the selected operating mode.
Entering the OFF command (0×0000) breaks the execution of the selected program and opens the contact.

Outputs registers (cont.)				
address	description	func.	type	atr.
OUT1				
16	Out1: Recording and reading of the output state ON/OFF Entering 1 (command ON) executes the program dependent on the selected operating mode. Entering 0 (command OFF) breaks the execution of the selected program and opens the contact.	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
17	Out1: output state reading ON/OFF 0 - contact open 1 - contact closed	03	int	R
18/19	Out1: contact closing counter [s]: R18×256 ${ }^{2}+$ R19	03	int	R
20/21	Out1: time of the last contact closing [s]: R20×256 ${ }^{2}+$ R21	03	int	R
22/23	Out1: total time of contact switching [s]: R22×256 ${ }^{2}+$ R23	03	int	R
24/25	Out1: number of the completed program cycles (applies to mode 4 and 5): $R 24 \times 256^{2}+\mathrm{R} 25$	03	int	R

Note!

Total time and number of contact switching are not retained after power failure.

Outputs registers (cont.)				
address	description	func.	type	atr.
OUT2				
32	Out2: Recording and reading of the output state ON/OFF Entering 1 (command ON) executes the program dependent on the selected operating mode. Entering 0 (command OFF) breaks the execution of the selected program and opens the contact.	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
33	Out2: output state reading ON/OFF 0 - contact open 1 - contact closed	03	int	R
34/35	Out2: contact closing counter $[\mathrm{s}]: \mathrm{R} 34 \times 256^{2}+\mathrm{R} 35$	03	int	R
36/37	Out2: time of the last contact closing [s]: R36×256²+R37	03	int	R
38/39	Out2: total time of contact switching [s]: R38×256²+R39	03	int	R
40/41	Out2: number of the completed program cycles (applies to mode 4 and 5): $R 40 \times 256^{2}+\mathrm{R} 41$	03	int	R

Note!
Total time and number of contact switching are not retained after power failure.

Outputs registers (cont.)				
address	description	func.	type	atr.
OUT3				
48	Out3: Recording and reading of the output state ON/OFF Entering 1 (command ON) executes the program dependent on the selected operating mode. Entering 0 (command OFF) breaks the execution of the selected program and opens the contact.	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
49	Out3: output state reading ON/OFF 0 - contact open 1 - contact closed	03	int	R
50/51	Out3: contact closing counter [s]: R50 $\times 256^{2}+$ R51	03	int	R
52/53	Out3: time of the last contact closing [s]: R52×256 ${ }^{2}+$ R53	03	int	R
54/55	Out3: total time of contact switching [s]: R54 $\times 256^{2}+$ R55	03	int	R
56/57	Out3: number of the completed program cycles (applies to mode 4 and 5): R56 $\times 256^{2}+$ R57	03	int	R

Note!
Total time and number of contact switching are not retained after power failure.

Outputs registers (cont.)				
address	description	func.	type	atr.
OUT4				
64	Out4: Recording and reading of the output state ON/OFF Entering 1 (command ON) executes the program dependent on the selected operating mode. Entering 0 (command OFF) breaks the execution of the selected program and opens the contact.	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
65	Out4: output state reading ON/OFF 0 - contact open 1 - contact closed	03	int	R
66/67	Out4: contact closing counter [s]: R66×256 ${ }^{2}+$ R67	03	int	R
68/69	Out4: time of the last contact closing [s]: R68×256²+R69	03	int	R
70/71	Out4: total time of contact switching [s]: R70×256²+R71	03	int	R
72/73	Out4: number of the completed program cycles (applies to mode 4 and 5): $R 72 \times 256^{2}+R 73$	03	int	R

Note!
Total time and number of contact switching are not retained after power failure.

Operating mode	0 (ON/OFF)
V1 - T1 time base	10
F1 - T1 multiplier	1
V2 - T2 time base	10
F2 - T2 multiplier	1
Number off cycles	0 (continuous operation)
State memory	0 (OFF)
Automatic start	0 (OFF)

