

PANEL SIGNAL TRANSDUCER $0 \div 20 \mathrm{~mA} / 0 \div 10 \mathrm{~V}$

PA-02-MBT

(6

escription of the device

The PA-02-MBT is a $0 \div 20 \mathrm{~mA} / 0 \div 10 \mathrm{~V}$ panel signal transducer with The PA-O2-MBT is a $0 \div 20 \mathrm{~mA} / 0 \div 10 \mathrm{~V}$ panel signal transducer with
the possibility of setting two independent alarms that control two elays.
The result is scaled according to the linear characteristic set by the user.
The device is equipped with Modbus RTU bus that allows to motely configure and read the measured parameters. module is enclosed in a $36 \times 72 \mathrm{~mm}$ panel casing with a 14 mm display ind front part. Adarionaly, on the front panel here are ondians Mo local configuration of the device parameters.

Main configuration menu

All device settings can be made using the configuration menu buttons available.
To enter the menu, press the [OK] button for about 2 seconds. The display will show 0000 indicating the service password input mode, the first digit will blink:

沰0

Enter the service password (default: 0000). The [UP/DOWN] buttons are used to change the value of a given item, the [OK] button confirms the set value of a given password position (currently set position blinks).
If you enter the incorrect password, an error message will be displayed:

Erra

and then the device will go into normal operation mode After entering the correct password, the first item of the main configuration menu will be displayed:

RLR

Exiting the menu will occur automatically after 30 seconds of inactivity or after selecting "EXIT

EHIL

and confirming the selection with [OK].
After entering the correct password, it is remembered for 2 minutes after leaving the menu, which allows you to re-enter the settings (within 2 minutes from the last time you left the menu) without having to re-enter the password.
Alarm configuration menu
The device has 2 relay outputs, which are controlled by two userconfigurable alarms.
Alarm configuration menu can be found in position No. 1 in the main configuration menu-"ALAR":

RLR

After confirming the selection with [OK], the menu for selecting the alarm for configuration will be displayed. To access the configuration submenu of alarm No. 1, select "A1":

8

and then confirm your selection with [OK].
esition No. 1 of the alarm configuration submenu will be dis played-"En":

En

The "En position is used to activate or deactivate the alarm unction. After pressing the [OK] button, select whether you wan the alarm function to be active - [YES] or inactive - [NO], and then confirm your selection with [OK].
Position No. 2 in the alarm configuration submenu is "LO":

10

The "LO" position is used to set the value of the lower threshold at which the alarm will be triggered.
The value can be changed in the range from the minimum displayable value (parameter "LO_d" in analogue options) to a value lower by 2 than the upper alarm threshold "HI".
After pressing the [OK] button, use the [UP/DOWN] buttons to set the expected value and then confirm the set value with the [OK] button.
Position No. 3 in the alarm configuration submenu is "HI":

Hi

the "HI" position is used to set the value of the upper threshold at which the alarm will be triggered.
The value can be changed in the range from the value higher by 2 than the lower alarm threshold "LO" to the maximum displayed value (parameter "HI_d" in the analogue options)

After pressing the［OK］button，use the［UP／DOWN］buttons to set the expected value and then confirm the set value with the［OK］ the expect \qquad	After pressing the［OK］button，use the［UP／DOWN］buttons to set the expected value，and then confirm the set value with the［OK］ button． （time	Configuration menu for communication parameters		
	Position No． 5 in th 1 \quad n	The menu for configuration of communication parameters can be found in item No． 2 in the main configuration menu＂CONN＂：	220000	2．4
Position No． 4 in the alarm configuration submenu is＂HYST＂ 4リ5t		After confirming the selection with the［OK］button，the configuration menu for communication parameters will be	${ }^{480}$ bes	4.8
	the expected vilue and the oonfif		ssobus	9.5
π	EMFF	RDar	${ }_{12200005}$	19.2
	The＂TOFF＂position is used to set the delay time for switching off the alarm relay in the range of $0-180 \mathrm{sec}$ ．After pressing the［OK］	through the Modbus RTU protocol in the range of $1 \div 247$ ． After pressing the［OK］button，use the［UP／DOWN］buttons to set the expected value and then confirm the set value with the［OK］	${ }_{\text {sanobes }}$	38.4
$\pm \ldots$			strob br	57.5
	LREH	口R以口	1 13200	115．2

Position No. 3 in the configuration menu for communication parameters is "PARI":

PRー!

The "PARI" position is used to set the RS-485 communication interface parity bits control within the range of the values shown below:

| Parameter | |
| :--- | :--- | :--- |
| Parity check
 disabled | Information on display |
| Odarity bit parity bit | |

After pressing the $[\mathrm{OK}]$ button, set the expected value using the [UP/DOWN] buttons and then confirm the set value with the [OK] button.
According to the Modbus RTU standard, 2 stop bits are sent if the parity check is deactivated.
When the parity check is enabled, 1 stop bit is sent:
Data format without parity check

Start bit 8 data bits

2 stop bits
Data format with parity check
Start bit 8 data bits
9 of 26 .

Position No. 4 of

 menu is "BACK":
bREH

The "BACK" item is used to exit the configuration menu for configuration of communication parameters.
Configuration menu for display settings
The configuration menu for display settings can be found in position No. 3 in the main configuration menu - "DISP":

$$
\text { di } 5 P
$$

When you confirm your selection with the [OK] button, the configuration menu for display settings is displayed.
Position No. 1 of the display settings configuration menu is "REFR":
EEF

The "REFR" position is used to set the refreshing time of the result shown on the display in the range of $0.1 \div 10$ seconds.
After pressing the [OK] button, use the [UP/DOWN] buttons to set the expected value and then confirm the set value with the [OK] button.
Position No. 2 of the display settings configuration menu is "ACCU':

\section*{	1	F	1
M	1	1	}

The "ACCU" position is used to select the accuracy of displaying the currently measured value the range of the values presented below:

Parameter	Information on display
Result with decimal part	Result without decimal part

After pressing the [OK] button, use the [UP/DOWN] buttons to set the expected value and then confirm the set value with the [OK] button.
Position No. 3 of the display settings configuration menu is "LED":

LEd

The "LED" position is used to enable or disable Modbus communication signaling with the [Tx] diode on the front panel of the device.
After pressing the [OK] button, set the expected value using the After pressing the [OK] button, set the expected value using the
[UP/DOWN] buttons and then confirm the set value with the [OK] button.
Position No. 4 of the display settings configuration menu is "BACK"

LREH

The "BACK" position is used to exit the display settings configuration menu.

Analog settings menu

The menu for configuring the analog settings is in position No. 4 in he main configuration menu - "ANLG":

Rnit

After confirming the selection with the [OK] button, the analog etting menu will be displayed, in which we set the parameters responsible for the selection of the analog input and for the characteristics of converting the analog value to the display indication.
he first item of this menu is "IN":

$1 n$

After confirming the selection with the [OK] button, we will enter he input selection:

「Hr

he "CURR" position means that the value on the display will be converted in proportion to the current measured at the current input, while selecting the "VOLT" position:
means that the value on the display will be converted in proportio to the voltage measured at the voltage input.

10

Position＂LO＿V＂is used to set the voltage for point P1 on the characteristic curve．
After confirming the selection with the［OK］button，we will proceed to the setting of this value．The value is set in V and can be changed from 0.0 V to 10.0 V ．
The situation is similar for third menu item，in which we set the current for point P2，and in the case when the voltage input is active，we set the voltage for point P2 of the characteristic curve． Below is a description of both cases：

HI［

The position＂HI＿C＂is used to set the current for point P2 on the characteristic curve．
After confirming the selection with the［OK］button，we will proceed to the setting of this value．The value is set in mA and can be changed from 0.0 mA to 20.0 mA ．

Hi

The position＂HI＿V＂is used to set the voltage for point P2 on the characteristic curve．
After confirming the selection with the［OK］button，we will proceed to the setting of this value．The value is set in V and can be changed from 0.0 V to 10.0 V ．

The position＂LO＿C＂is used to set the current for point P1 on th characteristic curve．
After confirming the selection with the［OK］button，we will proceed to the setting of this value．The value is set in mA and can be changed from 0.0 mA to 20.0 mA ．

Position No． 5 of this menu is＂LO＿d＂，which is responsible for setting the displayed value for point P ．In short，it is the value that will be displayed when the value of current or voltage（dependin on the measurement input selection）equals＂LO＿C＂or＂LO＿V＂ respectively．

$\begin{array}{lll}1 & 1 & 1\end{array}$

After confirming the selection with the［OK］button，we move on to setting the value．
This value can be changed from－999 to 9999 ．
Pressing the［OK］button again saves the setting
The sixth position in this menu is＂H＿＿d＂，which is responsible fo setting the value displayed for point $P 2$ ．In short，it is the value that will be displayed when the value of current or voltage（depending on the measurement input selection）equals＂HI＿C＂or＂HI＿V＂ respectively．

Hid

After confirming the selection with the［OK］button，we move on to setting the value
This value can be changed from－999 to 9999
Pressing the［OK］button again saves the setting． The last menu item is＂BACK＂

吅以

Configuration menu for general settings

he menu for configuring general settings can be found in position No． 2 in the main configuration menu－＂OTHR

OLHr

After confirming the selection with the［OK］key，the genera settings configuration menu will be displayed．
osition No． 1 of the general settings configuration menu－＂VERS ：

上E E E

The＂VERS＂position is used to check the software version of the device
After pressing the［OK］button，the device software version will be displayed．Pressing the［OK］button again will return to the general settings configuration menu
Position No． 2 of the general settings configuration menu－＂FACT＂

FREL

he＂FACT＂position is used to restore the factory settings of the device．After pressing the［OK］button，the device will enter the service password entry mode．After entering the correct password，use the［UP／DOWN］buttons to select the desired action according to the following values：

Parameter	Information on display
YES - reset the device to factory settings	
NO - no action	

and then confirm the set value by pressing [OK]
Position No. 2 of the general settings configuration menu - "PASS":

PR55

The "PASS" position is used to change the service password. After pressing the [OK] button, the device will enter the mode of entering the current service code.
After entering the correct password, 4 zeros will be displayed - use the [UP/DOWN] and [OK] buttons to enter the new password. If the operation is carried out correctly, the message "SAVE" will be displayed confirming the change of the password:

5月uE

After changing the service code, the main configuration menu will exit. You will be able to enter the menu again after entering a new password

Position No. 3 of the general settings configuration menu-"BACK

BREH
The "BACK" position is used to exit the general settings configuration menu.
Restoring factory settings
t is possible to restore the device to its factory settings, for example in case of loss of the service password.
To do this, turn on the power of the device while holding down the UP] and [DOWN] buttons and keep them pressed for 30 seconds from the moment the power is turned on. The factory settings reset will be confirmed by a test of the display.

Parameter	Value
alarm 1 on	NO
alarm 1 minimum	10
alarm 1 maximum	80
alarm 1 hysteresis	1
alarm 1 Ton	1.0 sec
alarm 1 Toff	1.0 sec
alarm 2 on	NIE
alarm 2 minimum	10
alarm 2 maximum	80
alarm 2 hysteresis	1
alarm 2 Ton	1 sec
alarm 2 Toff	1 sec
Modbus address	1
communication speed	9600 bps
parity	off
display refresh time	1x/s
display accuracy	with decimal point
communication diode	on
service password	0000
analog input	voltage
low point voltage characteristic	0.0 V
high point voltage characteristic	10.0 V
lower value of the characteristic	0
upper value of the characteristic	100

Panel description

Connection scheme

Mounting

1. The device should be mounted in a cut-out prepared according to the following figure:

2. The device should be inserted from the front into the hole.
3. Then attach the fastening elements to the sides of the device from behind and stabilize the device with them.

Technical data
power supply
measuring inputs
measurement accuracy
alarm hysteresis
lower alarm threshold upper alarm threshold alarm delay
minimal indication
maximum indication
communications parameters
speed (adjustable)
data bits
stop bits
parity check address
comumnication protocole working temperature terminal
disconnectableterminals tightening torque disconnectable terminals tightening torque display height dimensions mounting hole dimensions mounting protection level separated $0 \div 20 \mathrm{~mA} / 0 \div 10 \mathrm{~V}$
1%
$1 \div 9999$
$-999 \div 9998$
$-998 \div 9999$
$0.0 \mathrm{sec} \div 180.0 \mathrm{sec}$
-999
9999
$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
bit/s
8 1 or 2 EVEN/ODD/NONE
$1 \div 247$ Modbus RTU $-10 \div 40^{\circ} \mathrm{C}$
$2.5 \mathrm{~mm}^{2}$
0.4 Nm
$1.0 \mathrm{~mm}^{2}$ 0.2 Nm 14 mm
$\times 36 \times 72 \mathrm{~mm}$ $72 \times 36 \times 72 \mathrm{~mm}$ $67.5 \times 32.5 \mathrm{~mm}$ panel
IP20 IP20

CE declaration

Copy of the CE declaration can be downloaded from the website: www.fif.com.pl from the product subpage

int R/W

 $\begin{array}{cc}\text { 1024 } & \text { Derating time from power on [LSW] } \\ \text { (0x00400) } & \text { Value is calculated as as MSW } * 65536+L S W\end{array}$

1028 Manufacturing date

*R-read only, R/W -*R/W - read and write

