

F&F Filipowski sp. j. ul. Konstantynowska 79/81 95-200 Pabianice tel/fax 48 42 2270971 POLAND e-mail: fif@fif.com.pl

AT-1U **Analog Temperature** Transmitters [0-10V]

F&F products are covered by an 24 months warranty from date of purchase

PURPOSE

AT-1U module is designed to measure temperature with an external temperature sensor and converting the measured quantity to an unified analog output signal the voltage from range

FUNCTIONING

AT-1U shall keep under continuous transformation the resistance of external temperature sensor to output voltage signal from the range 0-10V. As a result of the transformation appears on the output current proportional to the temperature of the environment in which is the temperature sensor

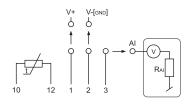
The module cooperate with a resistive temperature sensor The module cooperate with a resistive temperature sensor KTY61-210 (or analogous) Dedicated the temperature probes of the production of F&F: RT probe or probe Rt823. Probes are available separately. The output signal of module is protected by noise filter, which eliminates interference network, affecting the accuracy of the transmitted signal. This allows the use of signal seblecute 20th. cables up to 20m

Installation

- 1. Take OFF the power.
- 2. Put the module on the rail.
- 3. Temperature probe conect to joints 10-12 (arbitrary polarity)
- 4. Power supply connect to joint 1-2 accordance to mark. Signal output 3 connect with analog input of receiver.

ATTENTION!!! Maximum lenght of UTP cable - 20m

ATTENTION!!


Module AT-1U and receiving device can be powered from the same power supply. In the case when they are powered from two different power supplies should be connected with each other GND (-) both power to offset potentials. Otherwise, the measurement result will be saddled with a mistake.

ATTENTION!!

Module AT-1U work correctly with receivers with inner resistance

 (R_{Al}) of analog input more than $2k\Omega$ In the case of the input with resistance (R_{Al}) lower than $2k\Omega$, the measurement result will be saddled with a mistake.

WIRING DIAGRAM

Auxiliary calculation formulas

Based on a linear function y=a*x+b calculate formulas

[1]
$$Uw = [0,06666 \times Tm + 3,333] \pm 1\%$$

$$Where \ a = \frac{10 - 0}{100 - (-50)} = 0,06666$$

 $Tm = [15 \times Uw - 50] \pm 1\%$ [2]

Where
$$a = \frac{100 - (-50)}{10 - 0} = 15$$

Uw - output voltage [V]

Tm - environment temperature of sensor [°C]

4÷20mA - range of output current signal -50÷100[°C] - measure range of temperature sensor

±1% - precision of processing

Assembly

General assumptions

- recommended the use of filters and surge suppression (eg, OP-
- -recommended is wiring to UTP (twisted pair) for connecting the module to another device
- In the case of shielded cables grounded screens performed only on one side and as close to the device
- not installed parallel signal wires in close proximity to the line and high voltage średniegi
- do not install the module in close proximity to electrical devices, high-power electromagnetic measuring instruments, devices with phase power regulation, and other devices which can introduce distortions

TECHNICAL DATA

supply measure range mistake precision max. voltage temperature sensor working temperature storage temperature relative humidity connection dimensions	9÷30VDC -50°C++100°C ±1,5°C 0+10V KTY81-210 -40°C++85°C -40°C++85°C 85% to +30°C screw terminals 2,5mm² 1 module (18mm)
dimensions	1 module (18mm)
protection level	IP20

Dedicated temperature probe [F&F]

mark	RT
temperature sensor	KTY81-210
sensor dimensions	Ø5; h=20mm
sensor isolation	heat shrink
cable	OMY 2x0,34mm ² ;I=2,5m

RT823 mark KTY81-210 Ø8; h=40mm temperature sensor sensor dimensions sensor isolation metal bushing refractory SIHF 2x05mm²;I=2,5m cable

Working with programming controller MAX [F&F]

Example of program instruction in ForthLogic Language, reading of input current and convert the value of the measured to

temperature. 1 AI? 9.37 F* 87,5 F-

More information in the user programming in ForthLogic language

B111013